नई दिल्ली: मस्तिष्क की कनेक्टिविटी बताने के लिए नया एल्गोरिदम।
नई दिल्ली: भारतीय शोधकर्ताओं ने एक नया एल्गोरिदम विकसित किया है, जो मस्तिष्क के विभिन्न क्षेत्रों के बीच कनेक्टिविटी को बेहतर ढंग से समझने और पूर्वानुमान लगाने में वैज्ञानिकों की मदद कर सकता है। ग्राफिक्स प्रोसेसिंग यूनिट (जीपीयू)-आधारित यह मशीन लर्निंग एल्गोरिदम बेंगलूरू स्थित भारतीय विज्ञान संस्थान (आईआईएससी) के शोधकर्ताओं द्वारा विकसित किया गया है। रेगुलराइज्ड, एक्सेलेरेटेड, लीनियर फासिकल इवैल्यूएशन (ReAl-LiFE ) नामक यह एल्गोरिदम मानव मस्तिष्क के डिफ्यूजन मैग्नेटिक रेजोनेंस इमेजिंग (डीएमआरआई) स्कैन से भारी मात्रा में उत्पन्न डेटा का तेजी से विश्लेषण कर सकता है। शोधकर्ताओं का कहना है कि रियल-लाइफ के उपयोग से मौजूदा अत्याधुनिक एल्गोरिदम की तुलना में 150 गुना तेजी से डीएमआरआई डेटा का मूल्यांकन किया जा सकता है।
यह तस्वीर मध्य-मस्तिष्क और नियोकोर्टेक्स के विभिन्न क्षेत्रों के बीच संबंध को दर्शाती है। प्रत्येक क्षेत्र के कनेक्शन अलग रंग में दिखाए गए हैं। (इमेजः वर्षा श्रीनिवासन और देवराजन श्रीधरन)
मस्तिष्क में हर सेकंड लाखों न्यूरॉन फायर होते हैं और विद्युत तरंग उत्पन्न करते हैं, जो मस्तिष्क में एक बिंदु से दूसरे तक कनेक्टिंग केबल या ‘तंत्रिका फाइबर’ (Axons) के माध्यम से न्यूरोनल नेटवर्क में यात्रा करते हैं। मस्तिष्क द्वारा किए जाने वाली संगणनाओं के लिए ये कनेक्शन आवश्यक हैं।
आईआईएससी में पीएचडी शोधार्थी और अध्ययन की प्रमुख शोधकर्ता वर्षा श्रीनिवासन कहती हैं, "मस्तिष्क-व्यवहार संबंधों को बड़े पैमाने पर उजागर करने के लिए मस्तिष्क की कनेक्टिविटी को समझना महत्वपूर्ण है।" हालांकि, मस्तिष्क कनेक्टिविटी का अध्ययन करने के लिए पारंपरिक दृष्टिकोण के तहत आमतौर पर पशु मॉडल का उपयोग होता है, जिनमें चीरफाड़ की आवश्यकता होती है। दूसरी ओर, dMRI स्कैन, मनुष्यों में मस्तिष्क की कनेक्टिविटी का अध्ययन करने के लिए एक चीरफाड़ रहित विधि है।
Initiate News Agency (INA)